Leetcode 286. Walls and Gates 联通类型问题
题目表述
You are given a m x n 2D grid initialized with these three possible values.
-1 – A wall or an obstacle.
0 – A gate.
INF – Infinity means an empty room. We use the value 231 – 1 = 2147483647 to represent INF as you may assume that the distance to a gate is less than 2147483647.
Fill each empty room with the distance to its nearest gate. If it is impossible to reach a gate, it should be filled with INF.
Example:
Given the 2D grid:
INF -1 0 INF
INF INF INF -1
INF -1 INF -1
0 -1 INF INF
After running your function, the 2D grid should be:
3 -1 0 1
2 2 1 -1
1 -1 2 -1
0 -1 3 4
联通类型问题
分析这道题目时,可以联系Leetcode 200. Number of Islands这道题一起分析,这一类问题可以通称为联通类型问题,或者用更加形象的语言,我们都在一个矩阵中寻找一个“水中孤岛”。而两者的思路是非常类似的,都是寻找到一个孤岛点,然后向外扩张探索,遍历这个岛屿所有覆盖的点,而后循环往复指导所有孤岛点都已经被覆盖。
这个类型的问题有两种通用解法,即BFS解法和DFS解法。而经过比较,我认为DFS写法的代码更加简洁,效率也更高。因为BFS解法,即层次遍历,需要维护额外的 visited和 queue两个数据结构,而更新这些数据结构的时间也比较长。而DFS依托于递归来控制变量,不需要额外的数据结构,并且复杂性上与BFS等价。
BFS 代码 (1.53%)
class Solution {
public int numIslands(char[][] grid) {
HashSet<List<Integer>> visited = new HashSet<>();
List<List<Integer>> landList = new ArrayList<>();
if (grid==null|grid.length==0||grid[0].length==0) return 0;
int xlen = grid.length;
int ylen = grid[0].length;
for (int i=0;i<xlen;i++){
for (int j=0;j<ylen;j++){
if (grid[i][j]=='1') landList.add(Arrays.asList(i,j));
}
}
int result = 0;
for (List<Integer> land:landList){
if (visited.contains(land)) continue;
List<List<Integer>> queue = new ArrayList<>();
queue.add(land);visited.add(land);
while (!queue.isEmpty()){
//System.out.printf("============\n");
int num = queue.size();
for (int k=0;k<num;k++){
List<Integer> point = queue.remove(0);
int i = point.get(0);
int j = point.get(1);
//System.out.printf("point:[%d,%d]\n",i,j);
if (i>0 && grid[i-1][j]=='1' && !visited.contains(Arrays.asList(i-1,j))) {
visited.add(Arrays.asList(i-1,j));
queue.add(Arrays.asList(i-1,j));
}
if (i<xlen-1 && grid[i+1][j]=='1' && !visited.contains(Arrays.asList(i+1,j))){
visited.add(Arrays.asList(i+1,j));
queue.add(Arrays.asList(i+1,j));
}
if (j>0 && grid[i][j-1]=='1' && !visited.contains(Arrays.asList(i,j-1))){
visited.add(Arrays.asList(i,j-1));
queue.add(Arrays.asList(i,j-1));
}
if (j<ylen-1 && grid[i][j+1]=='1' && !visited.contains(Arrays.asList(i,j+1))){
visited.add(Arrays.asList(i,j+1));
queue.add(Arrays.asList(i,j+1));
}
}
}
result++;
}
return result;
}
}
DFS 代码 (100.00%)
我们在用DFS算法的时候要注意一个trick, 我把它称之为 前置判断 vs 后置判断。
在递归过程中,我们将一组参数从当前递归传递到下一层递归的过程中,需要进行条件判断,以排除非法情况,比如数组越界等等。所谓前置判断,就是在传递参数之前判断(参照上述BFS算法);而后置判断,就是在子递归函数中进行判断(即下面的DFS算法)。
在这个类型的问题中,我认为前置判断是一个更好的选择;有利于更加简洁有力地体现出代码逻辑,简化编码过程;而效率上两者没有质的区别。比如本题中每个分支会产生4个子分支,因此有4组部分重叠的判断条件;而采用前置判断之后,只使用了一个判断句。
class Solution {
private int xlen;
private int ylen;
private char[][] grid;
public int numIslands(char[][] grid) {
xlen = grid.length;
if (xlen == 0) return 0;
ylen = grid[0].length;
this.grid = grid;
int result = 0;
for (int x = 0; x < xlen; x++)
for (int y = 0; y < ylen; y++)
if (grid[x][y] == '1') {
result++;
dfs(x, y);
}
return result;
}
private void dfs(int x, int y) {
if (x < 0 || y < 0 || x >= xlen || y >= ylen || grid[x][y] == '0')
return;
grid[x][y] = '0';
dfs(x + 1, y);
dfs(x - 1, y);
dfs(x, y + 1);
dfs(x, y - 1);
}
}